
International Journal of Scientific & Engineering Research, Volume 3, Issue 7, July-2012                                                                                         1 

ISSN 2229-5518 
  

IJSER © 2012 

http://www.ijser.org  

Search Query Performance Improvement on 
Medica Data Bases 

Thayyaba Khatoon Mohammed, Gayatri.M, G. Swathi, Sukerthi.S. 

 

Abstract— Search queries on biomedical databases, such as PubMed, often return a large number of results, only a small subset of  which is relevant 

to the user. Ranking and categorization, which can also be combined, have been proposed to alleviate this information overload problem. Results cate-

gorization for biomedical databases is the focus of this work. A natural way to organizebiomedical citations is according to their MeSH annotations. 
MeSH is a comprehensive concept hierarchy used by PubMed. In thi spaper, we present the BioNav system, a novel search interface that enables the 
user to navigate large number of query results by organizing them using the MeSH concept hierarchy. First, the query results are organized into a navi-

gation tree. At each node expansion step, BioNav reveals only a small subset of the concept nodes, selected such that the expected user navigation 
cost is minimized. In contrast, previous works expand the hierarchy in a predefined static manner, without navigation cost modeling. We show that the 
problem of selecting the best concepts to reveal at each node expansion is NP-complete and propose an efficient heuristic as well as a feasible optimal 

algorithm for relatively small trees. We show experimentally that BioNav outperforms state-of-the-art categorization systems by up to an order of magni-
tude, with respect to the user navigation cost.  

. 

Index Terms— Interactive data exploration and discovery, search process, graphical user interfaces, interaction styles.   
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1 INTRODUCTION                                                                     

 

 
As an example, a query on PubMed for “cancer” returns more than 

two million citations. A more specific query,“breast cancer treat-
ment,” returns 111,433 citations. Our running example query for 

“prothymosin,” a nucleoprotein gaining attention for its putative role 
in cancer development, returns 313 citations. The size of the query 

result makes it difficult for the user to find the citations that she is 
most interested in, and a large amount of effort is expended search-

ing for these results. Many solutions have been proposed to address 
this problem—commonly referred to as information overload [1], 

[2], [3] ,[9], [16]. These approaches can be broadly classified into 

two classes: ranking and categorization—which can also be com-
bined. Ranking presents the user with a list of results ordered by 

some metric of relevance [9] or by content similarity to a result or 
a set of results [16]. In categorization [1], [2], [3], query results are 

grouped based on hierarchies, keywords, tags, or attribute values. 
User studies have demonstrated the usefulness of categorization in 

finding relevant results of exploratory queries [12]. While ranked 
results are useful when the ranking function is aligned with user pre-

ferences or the result list is small in size, categorization is generally 
employed by users when ranking fails or the query is too 

“broad” [12]. 
 

BioNav belongs primarily to the categorization class, which is espe-
cially suitable for this domain given the rich concept hierarchies 

(e.g., MeSH [19]) available for biomedical data. We augment our 
categorization techniques with simple ranking techniques. BioNav 

organizes the query results into a dynamic hierarchy, the navigation 
tree. Each concept (node) of the hierarchy has a descriptive label. 
The user then navigates this tree structure, in a top-down fashion, 

exploring the concepts of interest while ignoring the rest. 
 

 
 

 
 

 
 

THE last decade has been marked by unprecedented growth in both 

the production of biomedical data and the amount of published litera-
ture discussing it. The MEDLINE database, on which the PubMed 

search engine operates, contains over 18 million citations and is cur-
rently growing at the rate of 500,000 new citations each year [20]. 

Other biological sources, such as Entrez Gene [18] and OMIM [21], 
witness similar growth. As claimed in previous work [26], the ability 

to rapidly survey this literature constitutes a necessary step toward 
both the design and the interpretation of any large-scale experiment. 

Biologists, chemists, medical and health scientists are used to search-
ing their domain literature—such as PubMed—using a keyword 

search interface. Currently, in an exploratory scenario where the user 

tries to find citations relevant to her line of research and hence not 
known a priori, she submits an initially broad keyword-based query 

that typically returns a large number of results. Subsequently, the 
user iteratively refines the query, if she has an idea of how to, by 

adding more keywords, and resubmits it, until a relatively 
small number of results are returned. This refinement process 

is problematic because after a number of iterations, the user is not 
aware if she has overspecified the query, in which case relevant cita-

tions might be excluded from the final query result. 
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Fig. 1. Static navigation on the MeSH concept hierarchy.1 
 

An intuitive way to categorize the results of a query on PubMed is 
by using the MeSH static concept hierarchy [19], thus, utilizing the 

initiative of the US National Library of Medicine (NLM) to build 
and maintain such a comprehensive structure. Each citation in 

MEDLINE is associated with several MeSH concepts in two ways: 
1) by being explicitly annotated with them, and 2) by mentioning 

those in their text (see Section 7 for details). Since these associations 
are provided by PubMed, a relatively straightforward interface to 

navigate the query result would first attach the citations to the cor-
responding MeSH concept nodes and then let the user navigate the 

navigation tree. Fig. 1 displays a snapshot of such an interface where 
shown next to each node label is the count of distinct citations in the 

subtree rooted at that node. A typical navigation starts by revealing 
the children of the root ranked by their citation count, and is contin-

ued by the user expanding on or more of them, revealing their ranked 
children and so on, until she clicks on a concept and inspects the 

citations attached to it. A similar interface and navigation method is 

used by e-commerce sites, such as Amazon and eBay. For this ex-
ample interaction, we assume that some of the citations the user is 

interested in are available on the three indicated concepts corres-
ponding to three independent lines of research related to prothymo-

sin, and therefore the user is interested in navigating to these con-
cepts. These include, “Histones,” which play a role in gene regula-

tion and are essential for virus replication and tumor growth, “Cell 
Growth Processes” and “Transcription, Genetic,” a key process for 

synthesis and replication of RNA and thus plays an important role in 
the duplication of cancer cells. 

    Note that the user is not aware that the relevant results are availa-
ble specifically on these nodes—she is only interested in narrowing 

down the results, using a familiar concept hierarchy, instead of ex-
amining all the results.                

The above static—same for every query result—navigation method 
is problematic when the MeSH hierarchy (or one with similar prop-

erties) is used for categorization for the following reasons: 

 The massive size of the MeSH hierarchy (over 48,000 con-

cept nodes) makes it challenging for the users to effectively 
navigate to the desired concepts and browse the associated 

records. Even if we remove from the MeSH concept nodes 
with no citations attached to them, the 313 distinct query 

results for “prothymosin” are attached to 3,940 nodes, 
which is the actual size of the navigation tree in Fig. 

1.Combined with the fact that the MeSH hierarchy is quite 
bushy on the upper levels, this means that the user has to 

inspect, for example, a total of 152 concept nodes before 
she reaches the indicated concept “Histones”; a number 

comparable to the distinct citation count in the query result. 
A common practice [28] for hierarchy navigation is to 

show only a subset of a node’s children, which would be 
appropriate if only few nodes contain many results. Unfor-

tunately, this is not the case for the MeSH navigation tree; 
most of the 98 children of the root in Fig. 1 have many re-

sults (the first three shown have 310, 217 and 193). 

  A substantial number of duplicate citations are introduced 

in the navigation tree of Fig. 1, since each one of the 313 
distinct citations is associated with several concepts. Spe-

cifically, the total count of citations in Fig. 1 is 30,895. Na-
turally, the user would like to know which concepts frag-

ment the query result into subsets of citations with as few 
duplicate citations as possible across them. Currently, the 

only way to figure this out using the interface in Fig. 1 is to 
click on different concept nodes and inspect the attached ci-

tations. As an example, the query results for “prothymosin” 
are related to three independent lines of research, 

represented by the three indicated concepts in Fig. 1, which 
are hard to locate. Among the total 139 citations attached to 

the three indicated concept nodes, only 20 of them are dup-
licates. 

    BioNav introduces a dynamic navigation method that depends on 

the particular query result at hand and is demonstrated in Fig. 2. The 
query results are attached to the corresponding MeSH concept nodes 

as in Fig. 1, but then the navigation proceeds differently. The key 
action on the interface is the expansion of a node that selectively 

reveals a ranked list of descendant (not necessarily children) con-
cepts, instead of simply showing all its children. Fig. 2a, for exam-

ple, shows the initial expansion of the root node where only eight 
(highlighted) descendants are revealed compared to 98 children 

shown in Fig. 1. The concepts are ranked by their relevance to the 
user query and the number of them revealed depends on the charac-

teristics of the query results. Next, assuming the user is interested in 

the “Amino Acids ...” node and judging that the 310 attached cita-
tions is still a big number, she expands it by clicking on the “>> >” 

hyperlink next to it in Fig. 2b. The user inspects the six concepts 
revealed and decides that she is not interested in any of them. Hence, 

she expands the “Amino Acids ...” node one more time in Fig. 2c, 
revealing four additional concepts. Note that “Nucleoproteins” is an 

example of a descendant node being revealed, since its parent node 
“Proteins” is not 
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Fig. 2. Dynamic navigation steps to reach the concept “Histones” for the 
query “prothymosin.” 
 

revealed in Fig. 2c. In Fig. 2d, the user expands the “Nucleoproteins” 
node and reveals “Histones,” one of the three key concepts for the 

query. In the last step of the interaction, the user clicks on the “His-
tones” hyperlink and the 15 corresponding citations are displayed in 

a separate frame as shown in Fig. 3. To reach “Histones” using the 
BioNav navigation method, only 23 concepts are revealed, after four 

node expansions, compared to 152 concepts, also after four expan-
sions, with the static navigation method of Fig. 1. For each expan-

sion, the displayed descendant concepts are chosen in a way that the 
expected navigation cost is minimized, based on an intuitive naviga-

tion cost model we present in Section 3. The cost model estimates 
the exploration probability for a node based on its selectivity, that is, 

the ratio of attached citations before and after the query. The naviga-
tion cost for a concept node is also proportional to the density of the 

navigation subtree rooted at this node in terms of citation count. In-
tuitively, the selection is done such that every expansion reduces 

 
maximally the expected remaining navigation cost. For example, the 

reason that “Proteins” is not displayed in Fig. 2 is that it is too gener-
al given the query results and the original distribution of citations  in 

the PubMed database (details in Sections 3 and 4), and hence dis-
playing it would lead to an expected increase in the user navigation 

cost, based on the user navigation cost model. In addition to the stat-
ic hierarchy navigation works mentioned above, there are works on 

dynamic categorization of query results (e.g., the Clusty search en-
gine [29], or [2], [3]), which create unsupervised query-dependent 

results clusters, but do not study how the clusters should be navi-
gated. BioNav is distinct since it offers dynamic navigation on a 

predefined hierarchy, as is the MeSH concept hierarchy. Another 
difference is that BioNav uses a navigation cost model to minimize 

the navigation cost.  
We make the following contributions: 

1. A comprehensive framework for navigating large query re-
sults         from PubMed using MeSH, an extensive concept 

hierarchy used for  indexing citations in MEDLINE (Sec-
tion 2). 

2.  A formal cost model for measuring the navigation cost in-

curred by the user (Sections 3 and 4). 
3.  A complexity result proving that expanding the tree in a 

way that minimizes the user’s navigation cost is an NP-
complete problem (Section 5). 

4.  An efficient heuristic and a feasible optimal algorithm for 
minimizing the navigation cost (Section 5). 

5.  Experimental results validating the effectiveness of the 
BioNav system when compared to state-of-theart categori-

zation systems (Section 8).  
6. An online version of the BioNav system is available at  

http://db.cse.buffalo.edu/bionav. 
Although we specifically target the biomedical domain in this work, 

the approach can be directly applied to data sets where tuples are 
classified using terms from a concept 

hierarchy. The core of the first contribution has been presented in our 
preliminary short paper [13]. The BioNav system architecture and 

implementation is presented in Section 7. Related work is discussed 
in Section 9 and the paper concludes in Section 10.  

 

 
 
2 FRAMEWORK AND BIONAV OVERVIEW 

 
 

 The MeSH concept hierarchy is the starting point of the 
framework and is defined as follows:  
Definition 1 (Concept Hierarchy). A Concept Hierarchy H(V ,E, 
r) is a labeled tree consisting of a set V of concept nodes, a 
set E of edges and is rooted at node r. Each node n є V has a 
label l and a unique identifier id.  

http://db.cse.buffalo.edu/bionav


International Journal of Scientific & Engineering Research Volume 3, Issue 7, July-2012                                                                                  4 

ISSN 2229-5518 

 

IJSER © 2012 

http://www.ijser.org  

According to the semantics of the MeSH concept hierarchy 
[19], the label of a child concept node is more specific than the 
one of its parent. This also holds for most concept hierarchies. 
     Once the user issues a keyword query, PubMed—BioNav uses 

the Entrez Programming Utilities (eUtils) [7]—returns a list of cita-
tions, each associated with several MeSH concepts. BioNav con-

structs an Initial Navigation Tree by attaching to each concept node 
of the MeSH concept hierarchy a list of its associated citations. For-

mally, an Initial Navigation Tree TI( VI, EI, r) is a concept hierarchy, 

where every node (concept) n є V1 is additionally labelled with  
 

 
 

 

 
 
Fig. 3. BioNav interface. 

 

Once the user issues a keyword query, PubMed—BioNav uses the 
Entrez Programming Utilities (eUtils) [7]—returns a  list of citations, 

each associated with several MeSH concepts. BioNav constructs an 
Initial Navigation Tree by attaching to each concept node of the 

MeSH concept hierarchy a list of its associated citations. Formally, 
an Initial Navigation Tree TI(VI, EI, r) is a concept hierarchy, where 

every node (concept) n є V1 is additionally labelled with a results 

(citations) list L(n). 
 In a given initial navigation tree, several concept nodes might have 

an empty results list. Since MeSH is a rather large concept hierarchy, 
BioNav reduces the size of the initial navigation tree by removing 

the nodes with empty results lists, while preserving the ances-
tor/descendant relationships. Formally, the resulting structure is de-

fined as follows: 
 

 Definition 2 (Navigation Tree). A Navigation Tree T(V ,E, r) is 
the maximum embedding of an initial navigation tree TI(VI, EI, 
r) such that no node n є V is labeled with an empty results list 
L(n), excluding the root (in order to maintain the tree structure 
and avoid a forest). 
 
An embedding T(V ,E, r) of a tree TI(VI, EI, r) is an injection from 

V to VI such that every edge in E corresponds to a path (disjoint from 

all other such paths) in TI . An embedding T of a tree TI , where both 
trees are rooted at node r, is maximum if no other node n with a 

nonempty results list L(n) can be added to V and T still be an em-
bedding. The maximum embedding of the initial navigation tree is 

recursively computed in a single depthfirst left-to-right traversal. If a 
nonleaf node n has an empty results list L(n), then add all children of 

n to the parent of n and remove it. If n is a leaf, then remove it. Fig. 

4a shows part of the navigation tree for the “prothymosin” query, 
where the results lists are omitted for clarity.  

The above procedure reduces the size of the initial navigation tree, 
but the structure is still too big (3,940 nodes for “prothymosin”) to 

simply display it to the user and let her navigate it. BioNav minimiz-
es her effort to reach the desired citations in the navigation tree by 

expanding in away that minimizes the expected overall user naviga-
tion cost. Moreover, BioNav avoids information clutter by hiding 

unimportant concept nodes leading to interesting ones. This is 
achieved through a series of expand actions that reveal only a few 

descendants (not necessarily children) of the user selected node for 

further navigation. 
We model a node expansion at a given navigation step as an Edge-
Cut in the navigation tree. In graph theory, an EdgeCut in a graph 

G(V ,E) is a set of edges Ec C  E such that the graph G‟(V ,E\EC) 
has more components than G. For trees, any subset of the edges con-

stitutes an EdgeCut, since the removal of any edge creates a new 
component. 

In Fig. 4a, the dashed line illustrates the EdgeCut corresponding to 
the expansion of the node “Amino Acids ...” and reveals the hig-

hlighted concepts of Fig. 4a. These revealed nodes are visualized on 

the interface as a tree shown in Fig. 4b. The EdgeCut consists of the 
edges (“Proteins” and “Transcription Factors”) and (“Proteins” and 

“Nucleoproteins”). Intuitively, an EdgeCut allows us to “skip” child 
nodes (“Proteins”), navigate directly to descendant nodes . 
 

 
 
Fig. 4. (a) Navigation tree, EdgeCut, and component subtrees. 

(b) Visualization of the EdgeCut on the user interface. 
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tree before and after the EdgeCut in Fig. 4. 
 

ocated deeper in the tree and show them as children of the node be-
ing expanded. Moreover, an EdgeCut can selectively reveal only a 

subset of a potentially large set of descendant nodes, as is the case in 
Fig. 2b where only 6 out of the 52 descendants of “Amino Acids ...” 

are revealed.  

Definition 3 (Valid EdgeCut). A valid EdgeCut of a tree T(V 
,E,r) is an EdgeCut C - E such that no two edges in C appear 
in the same path from the root to some leaf node. 
We only consider valid EdgeCuts in the rest of the paper, because 

invalid ones lead to unintuitive navigations. Component subtrees. An 
EdgeCut causes the creation of two types of component subtrees, 

upper and lower. Given an EdgeCut C of a tree T(V ,E, r), a lower 
component subtree IðyiÞ rooted at yi is created by each node yi є V , 
such that (x, yi) є C for some node x. In Fig. 2c, the expansion 

of,“Amino Acids ...” creates four lower component subtrees, two of 
which are shown in Fig. 4a, rooted at “Transcription Factors” and 

“Nucleoproteins.” Moreover, for a given EdgeCut C, a single upper 
component subtree is created consisting of the nodes not in any low-
er component subtree, and is always rooted at the root of the tree 

being expanded. In Fig. 4a, the upper component subtree comprises 
of the nodes “Amino Acids ...” and “Proteins.” The state of the navi-

gation tree after an EdgeCut, and the component subtrees created, is 

captured by the Active Tree defined below.  

Definition 4 (Active Tree). An Active Tree TA(V ,E, r) is a Navi-
gation Tree where each node n є V is annotated with a node 
set I(n) consisting of the nodes in the component subtree 

rooted at n. If a node n is not a root of a component subtree, 
then I(n)= {n}. The nonsingleton I sets are disjoint.  
Before any EdgeCut, a navigation tree is trivially converted to an 
active tree by annotating the root node with an I set that includes all 

tree nodes. The rest of the nodes ni are annotated with the node set 

I(ni) ={ni}. Fig. 5a shows (part of) the active tree capturing the state 

of the navigation tree before the EdgeCut in Fig. 4a (singleton I sets, 
such as “Histones,” are not shown). An EdgeCut (expansion) is an 

operation on the active tree, performed on the I set of a given node, 
and updates the sets I(ni) of the roots ni of the upper and lower sub-

trees created by the EdgeCut based on the nodes included in these 

subtrees. It is denoted by EdgeCut: I(n)  S C I(n) and returns the 

set S of roots of the upper and lower subtrees that it creates. Fig. 5b 
shows the effect of the EdgeCut operation in Fig. 4a on the active 

tree in Fig. 5a. The active tree is closed under the EdgeCut operation. 
Note that the set I(n) of a node n is overloaded to also denote the 

“invisible” component subtree of the active tree that is rooted at n 
and only consists of the nodes in IðnÞ. For instance, the invisible 
subtree I (“Amino Acids ...”) in Fig. 5b is the one indicated as the 

upper component subtree in Fig. 4a. 

 BioNav visualizes the active tree to the user by showing only the 
nodes that do not appear in any nonsingleton I set organized as fol-

lows: 

 Definition 5 (Active Tree Visualization). The visualization of an 
active tree TA(V ,E, r) is the embedded tree T‟A(V‟ , E‟, r). V‟ are 

the nodes not in any nonsingleton IðnÞ, for all n є V . Shown 
next to every node n є V‟ is the number of distinct citations 
attached to nodes in I(n), given by |L(I(n))|=|Uni є I(n)L(ni)|. If n 
has a nonsingleton I(n), then an expand hyperlink is shown 
next to it. 
 The visualization of the active tree after the EdgeCut in Fig. 4a is 

shown in Fig. 4b and is a subset of the nodes revelaed in Fig. 2c. The 
citation count |L(I(n))| for “Nucleoproteins” in Fig. 2c is 40 denoting 

the unique citations attached to it and its (invisible) component subt-

ree. It is reduced to 19 in Fig. 2d, since its component subtree is get-
ting smaller as descendant concept nodes are revealed. 

 An EdgeCut and the visualization of the resulting active tree are 
capable of reducing the navigation tree both heightand widthwise. 

The embedded tree in Fig. 2c, compared to the navigation tree in Fig. 
1, is narrower and shorter. Note that we do not make any assump-

tions about the user’s preference over the tuples in the result and 
every citation in the result can be reached by a sequence of naviga-

tion actions, that is, there is no information loss in navigating the 
query results using our framework. 

Using the “>> >” hyperlinks, the user can trigger subsequent Edge-
Cut operations on component subtrees in a recursive fashion. Al-

though we expect the user to trigger EdgeCut operations predomi-

nantly on the lower component subtrees, an EdgeCut is possible on 
the upper subtree as well. For example, an EdgeCut operation on the 

upper component subtree of Fig. 4a would reveals the “Proteins” 
concept as parent of the previously revealed concept “Nucleoprote-

ins.” 
 

3 NAVIGATION AND COST MODEL 

 
The navigation model of BioNav is formally defined in this section. 
Then, the navigation cost model is presented, which is used to devise 

and evaluate our algorithms. 

 
3.1 Navigation Model 
 
After the user issues a keyword query, BioNav initiates a navigation 

by constructing the initial active tree (which has 544 IEEE TRANSAC-

TIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 4, APRIL 2011 
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Fig. 6. TOPDOWN navigation model. 
 

 

a single component tree rooted at the MeSH root) and displaying its 
root to the user. Subsequently, the user navigates the tree by per-

forming one of the following actions on a given component subtree 
IðnÞ rooted at concept node n: 

 1. EXPAND IðnÞ: The user clicks on the “>>> ” hyperlink next to 
node n and causes an EdgeCut (IðnÞ) operation to be performed on 

it, thus revealing a new set of concept nodes from the set IðnÞ. 

 2. SHOWRESULTS IðnÞ: By performing this action, the user sees 

the results list LðIðnÞÞ of citations attached to the component subt-
ree IðnÞ. 

 3. IGNORE IðnÞ: The user examines the label of concept node n, 

ignores it as unimportant and moves on to the next revealed concept. 
4. BACKTRACK: The user decides to undo the last EdgeCut opera-

tion.  
This navigation process continues until the user finds all the citations 

she is interested in. In order to define a cost model, we focus on a 

simplification of the general navigation model, which we call TOP-
DOWN, where only EXPAND, SHOWRESULTS, and IGNORE are 

the available operations, that is, the user follows a top-down only 
navigation starting from the root. TOPDOWN is common in prac-

tice. When the user encounters a leaf node in TOPDOWN, the only 
option is SHOWRESULTS. The TOPDOWN navigation model is 

formally presented in Fig. 6 and is a recursive procedure that is in-
itially called on the root of the active tree. 

 

 3.2 TOPDOWN Cost Model 
 

The cost model, which is inspired by a previous work [2], takes into 
consideration the number of concept nodes revealed by an EXPAND 

action, the number of EXPAND actions that the user performs and 
the number of citations displayed for a SHOWRESULTS action. In 

particular, the cost model assigns 1) cost of 1 to each newly revealed 
concept node that the user examines after an EXPAND action, 2) 

cost of 1 to each EXPAND action the user executes, and 3) cost of 1 
to each citation displayed after a SHOWRESULTS action. 

  
For example, in the navigation of Fig. 2 above, the cost for reaching 

the “Histones” concept and inspecting its attached citations is 42. 
That is, four EXPAND actions that reveal a total of 23 concept 

nodes, and a SHOWRESULTS action on the “Histones” concept that 

lists 15 citations. The user examines all concept nodes and all cita-
tions in order to select the ones of interest. Since the exact sequence 

of actions of a user cannot be known a priori, we estimate the cost 
based on the following two probabilities: 

1.EXPLORE probability PE I(n) is the probability 
that the user is interested in the component subtree 

I(n) and will hence explore it. The IGNORE 

probability is 1 _ PE I(n). 
2. EXPAND probability PCðIðnÞÞ is the probability that the user 

executes an EXPAND action on component subtree I(n) given that 

she has chosen to explore I(n). The SHOWRESULTS probability for 
I(n) is 1 _ PC I(n). 
In Section 4, we show how we estimate probabilities PEðIðnÞÞ and 

PCðIðnÞÞ. The cost of exploring component subtree IðnÞ, rooted at 
node n, is 

 cost I(n)= PN E I(n) (1- PC I(n)|L( I(n)) 
                               +PC I(n) . B +|S| ∑ SєS cost Ic(S))) ; 
 where PN E I(N) is the normalized PE I(n), such that the sum of PN E s 

of the component subtrees after an EdgeCut equals 1. PN E of the 

original tree is 1. The intuition for this normalization is that the 
probability that the user wants to explore a node n should not depend 

on the specific expansions sequence that revealed n. The first ope-
rand of the addition inside the big parenthesis is the cost of executing 

SHOWRESULTS on n. The second operand is the cost of executing 

an EXPAND action on n. The constant B is the cost of executing the 
EXPAND action, and S is the set of concept nodes revealed by the 

action, or otherwise the roots of component subtrees returned by the 

EdgeCut operation. IC(S) is the updated I set of a node s 2 S after the 
EXPAND action on IðnÞ has been performed. Recall that |L I(n)| in 

the cost formula is the number of distinct citations attached to IðnÞ. 

Intuitively, creating a component subtree with large number of dup-
licates reduces the navigation cost if the SHOWRESULTS probabili-

ty for that subtree is high. Moreover, the number of duplicates across 
component subtrees should be minimal; otherwise the user will pay 

the cost of inspecting a citation multiple times. Finally, note that by 
changing B, the cost assigned to executing an EXPAND action, we 

affect the number of revealed concepts after each EXPAND. In par-
ticular, increasing this cost leads to more concepts revealed for each 

EXPAND action. This cost can be thought of as a cognitive meas-
ure of a user’s expectation of the system behavior as she navigates 
the query navigation tree. A small expand cost would decrease the 

number of concept nodesrevealed during each EXPAND action, 
whereas the user canprocess more. It would also increase the number 

of EXPAND actions thus frustrating the user. In Section 8, we expe-
riment with various values of B. 

 

4 ESTIMATION OF NAVIGATION PROBABILITIES 

 
We assume that each citation is equally likely to be of interest to the 

user. If more information about the “goodness” of the citations were 
available, our approach could be straightforwardly adapted using 

appropriate weighting for L I(n). 
 

4.1 Estimating EXPLORE Probability PE 

 

Since all citations in the query result are assumed to be of equal im-
portance, concept n is of higher interest if L(n) is large. On the other 

hand, a concept that is associated with a very large number of cita-
tions LT(n) of MEDLINE, independently of the query, is probably not 

discriminatory or important. The latter is inspired by the inverse 
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document frequency measure in Information Retrieval. Hence, PE(n) 
for a node n is proportional to |L(n)|/|LT(n)|.   We normalize 

 
 
 
PE(n) by dividing by the sum of all PEs in the navigation 

tree T, that is 
 
PE(n) =             |L(n)| 

            (         |LT(n)|               )  
 
                (∑niєT    |L(ni)| 

                                  |LT(ni)| 
 

For a component tree IðnÞ rooted at node n: 

 
PE I(n) = ∑ ni є I(n)  PE(ni): 
 

Given the above formula, PE( I(n)) =1 for the initial active tree. The 

above PE formulas, together with the cost model in Section 3, largely 
determine the characteristics of the component subtrees BioNav 

creates during an EXPAND action. In particular, the upper compo-
nent subtree typically groups together 1) concepts with low PE and a 

large number of attached citations, and 2) concepts with high PE and 

a small number of attached citations. The first group is 

dismissed as uninteresting and the second could lead to a 
large number of concepts being revealed. Intuitively, the two 
groups of concepts average each other out according to the 
PEðIðnÞÞ formula. The lower component subtrees typically 
group concepts with PE and number of attached citations in 
between the two extremes in a way that minimizes the average 
navigation cost. 
 
4.2 Estimating EXPAND Probability PC 

 

PC (I(n)) is 0, if n is a leaf concept node or has a singleton I(n) set, 

since there is no other choice for the user. For internal nodes in the 
active tree with a nonsingleton I(n) set that have a large L(I(n), a 

typical user will want to further narrow down when faced with the 

prospect of seeing too many citations, that is, PCðIðnÞÞ is 1, if 
L(I(n)) is greater than an upper threshold. is 0, if L(I(n)) is smaller 

than an lower threshold. Currently, BioNav operates with 50 and 10 

being the upper and lower threshold, respectively. In the remaining 
cases, a user might want to narrow down the search of I(n) by ex-

ecuting an EXPAND action, if the citations under n are widely dis-

tributed among the subconcepts in I(n). An objective measure for 
such a wide distribution (disorder) is information entropy. If the 

entropy of the subtree I(n) is high, then the user would benefit from 

an EXPAND action. Hence, PC(I(n)) is defined as 

 
PC(I(n)) = E(I(n)) = ∑ni є I(n)       |L(ni)| 

                                                         |L(I(n)Þ)          log |L(ni)| 

                                                                                    
                                                                                         |L(I(n))| 

 
                                                  -log    1 

                                                                                     
                                                                                     |I(n)| 

                                                                                       
: 

 

The sum can become greater than one because of the existence of 
duplicates. Hence, we normalize the entropy of IðnÞ by dividing 

with the maximum entropy, where citations are uniformly distributed 
to all nodes in IðnÞ and there are no duplicates. PC determines the 

impact of duplicates in a component subtree after a node expansion. 
If PC(I(n)) is low, that is, the SHOWRESULTS probability is high, 

then the number of duplicates in I(n) plays a bigger role in the way a 

component subtree is expanded. 
 

5 COMPLEXITY RESULTS 

 
To prove that the problem of selecting the optimal valid EdgeCut for 

a given tree is NP-hard, where “optimal” means minimize the user 
navigation cost according to the navigation model of Section 3, we 

prove that the problem is NP-complete for a simplified navigation 
model, which we refer to as TOPDOWN-EXHAUSTIVE and is a 

special case of the TOPDOWN model shown in Fig. 6. In TOP-
DOWN-EXHAUSTIVE, BioNav performs an EXPAND action on 

the root of the initial active tree, and then the user selects randomly 
the root of one of the component subtrees created and performs a 

SHOWRESULTS action. The cost of TOPDOWN-EXHAUSTIVE 
navigation is the cost to read the root label of all component subtrees 

revealed by the EdgeCut plus the cost of SHOWRESULTS 
for the selected component subtree. Intuition on the complexity of 

computing optimal valid EdgeCut. The “optimal” valid EdgeCut is 
the EdgeCut that will lead to the minimum expected navigation cost, 

that is, the minimum average cost. In order to minimize the expected 
cost of TOPDOWN-EXHAUSTIVE navigation, we need to minim-

ize the cost of EXPAND and of SHOWRESULTS. The cost of EX-
PAND is simply the number k of component subtrees produced by 

the EdgeCut. The average cost of SHOWRESULTS over all compo-

nent subtrees equals the sum of unique elements (citations) in every 
subtree over k. This sum would be|L(T)| where T is the navigation 

tree if there were no duplicates among the subtrees. However, due to 
the existence of duplicates (the same citation can be annotated with 

multiple MeSH concepts) this sum depends on the EdgeCut. Hence, 
the duplicates are the reason that the problem is NP-complete 

for TOPDOWN-EXHAUSTIVE, because we need to maximize the 
number of duplicates within the created subtrees, and at the same 

time create a relatively small number of component subtrees. Note 
that even for a given k, the problem of selecting the best EdgeCut is 

NP-hard as we show in Theorem 1. 

 

Theorem 1. Finding the optimal valid EdgeCut in TOPDOW-
NEXHAUSTIVE is NP-complete. 
 

Proof. The decision problem corresponding to the problem of 
computing the optimal EdgeCut is as follows: TOPDOWN EX-

HAUSTIVE decision (TED) problem. Given a navigation tree T, 
where each node n contains a list LðnÞ of elements from un-
iverse U (U are all the citations in the query result), that is, 
LðnÞ _ U, there exists an EdgeCut C of T that creates k sub-
trees (including the upper subtree) with d duplicate ele-
mentswithin the created subtrees. 
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subtrees and each Si contains b(Si) duplicates, i.e., elements that 

appear somewhere in S1; . . . ; Si_1 (if an element appears three 
times, then it counts as two duplicates), then ∑ i=1...k b(Si) = d. 
 

Note that the cost of a TOPDOWN-EXHAUSTIVE navigation is 
computed as follows: if we solve the TED problem for every combi-

nation of k and d. If T has W unique results, then a subtree of the 
EdgeCut will have on average (W + d)=k results. Hence, the whole 

navigation cost is k + (W + d)=k, where k is the cost of reading the 

labels of the k subtrees.  
TED is in NP since a solution can be verified in polynomial time. To 

prove that it is NP-complete, we will reduce the MAXIMUM EDGE 
SUBGRAPH (MES) problem, which is NP-complete [8], to TED.  

 

MAXIMUM EDGE SUBGRAPH (MES) problem.: 

 

Given graph G(V ,E), a weight function w : E N (N are the natu-
ral numbers) and positive integers d and k0, there is a subset V‟ c V 
with |V „|= k‟ such that the sum of the edge weights of the edges be-

tween the nodes in V‟ is d, that is,   ∑ (u,v)єE∩(V '×V‟) w(u, v) = d. 
 

   Mapping of MES to TED. For each node u є V, we create a node 
u‟ in T that is a child of the root of T. That is, the root r of T is empty 

(L(r)=ϕ) and it has |V | children. The universe U is defined as fol-

lows: for each pair of edges(u, v )є E with weight w(u, v), we add 

elements B1 uv; . . .;Bw(u;v) uv in U. Each of the nodes of T is popu-
lated with elements from U as follows: For each edge (u, v) є E, we 

add to nodes u‟ and v‟ of T the elements B1 uv; . . .;Bw(u;v) uv . The 

intuition is that we map an edge weight in MES to the number of 
duplicates between two nodes in TED.We set k =|V | - k‟ + 1. In the 

figure below, the EdgeCut splits the tree into k subtrees. Note that 

the above reduction is linear on the maximum edge weight in G, 
which generally is less than |V |, hence the reduction is polynomial 

on |V | and |E|. Now, a solution to MES is mapped to a solution to 

TED, since selecting k0 nodes in MES corresponds to expanding 

the tree into k subtrees in TED. The nodes of V corresponding 
to the nodes in the upper subtree of the EdgeCut (the one in-
cluding the root) are the solution to MES. This set of nodes has 
maximum sum of edge weights in MES and maximum num-
ber of duplicates in TED. 

 

6. EXPERIMENTAL EVALUATION 

 
We evaluated the BioNav system in terms of both average navigation 
cost and expansion time performance. Other traditional measures of 

quality, such as precision and recall, are not applicable to our scena-

rio as the objective is to minimize the tree navigation cost and not to 
classify. In Section 8.1, we show that the BioNav navigation method, 

which is evaluated using the Heuristic-ReducedOpt algorithm, 
leads to considerably smaller navigation cost for a set of real queries 

on the MEDLINE database and navigations on the MeSH hierarchy. 
In Section 8.1, we compare the optimal algorithm (Opt-EdgeCut) 
with Heuristic-ReducedOpt and show that the heuristic is a good 

approximation of the optimal. These experiments were  
 

 
 

 
 

 
executed on a reduced navigation tree (_20 nodes), constructed 

from the original query navigation tree for each query, since Opt- 
EdgeCut is prohibitively expensive for most navigation trees. Final-

ly, Section 8.3 shows that the execution time of Heuristic- 

 
ReducedOpt is small enough to facilitate interactive-time user  

navigation. 

The experiments were executed on a Dell Optiplex machine with 3 
GHz CPU and 2 GB of main memory, running Windows XP Profes-

sional. All algorithms were implemented in Java and Oracle 10g was 
used as the database. 

 

6.1 Navigation Cost Evaluation 
 

To evaluate the navigation cost benefit of BioNav, we asked two 
researchers, who use PubMed regularly, to create a set of 10 queries 

each. The first researcher was a biochemist and the second a medical 
doctor. We asked them to consider queries that cover topics within 

their fields and are of exploratory nature, that is, queries that return 
more than just a few citations. For each query, we also asked them to 

designate a target MeSH concept in the corresponding navigation 
tree that they would subjectively consider as most interesting. The 

two sets of queries we received consist our workload and is show in 
Table 1. Apart from the queries (“Keywords” column), listed are 

statistics on the initial navigation trees, the target concepts and in-
formation regarding their location depth in the MeSH hierarchy, the 

number of citations jLðnÞj attached to them for the given query, and 

the total number of citations |LT (n)| attached to them in MEDLINE. 
 

“Follistatin” and “LbetaT2” are terms that mainly interest biochem-
ists studying reproductive endocrinology and gynecology. The “dys-

lexia genetics” query accumulates results related to genes associated 
with dyslexia. “Melibiose permease” and “Na+/I- symporter” are 

transport proteins related to bacterial growth and thyroid function, 
respectively. 

 On the other hand, “vardenafil” (Levitra), used for the treatment of 
erectile dysfunction, and “varenicline” (Chantix), used for quitting 

smoking, are two new drugs that interest many medical doctors. Inte-
restingly, some queries correlate with quite a few fields of research 

and others concentrate in more specific topics.  
For example, the literature for “prothymosin,” although not particu-

larly broad in number of citations in the query result (313), is asso-

ciated with several topics such as cancer, cell proliferation, apopto-
sis, chromatin remodeling, transcriptional regulation, and immunity. 

In contrast, “vardenafil” retrieves a higher number of citations (486) 
but 

the literature is mostly targeted to erectile dysfunction and 
hypertension. This fact is reflected on the navigation tree 
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TAB LE 1 

Query Workload 
 
 

 

 

characteristics for the two queries, also shown in Table 1. The navi-

gation tree for “prothymosin” is bigger than the one for “vardenafil” 
in every respect, that is, tree size, maximum width and height. 

 In this experiment, we assume that the user follows a top-down na-
vigation where she always chooses the right node to expand in order 

to finally reveal the target concept. We compare the navigation cost 
of BioNav, where EXPAND is implemented using the Heuristic-
ReducedOpt algorithm (with z = 10), to the two navigation strate-

gies, Static and Top10LevelWise, described in Section 6.3.  
 

Fig. 8 compares the navigation cost for these three methods. We 

observe that BioNav often improves the navigation cost by an order 
of magnitude, over Static navigation. The average improvement of 

BioNav, over static navigation, is 82 percent, for B = 15. The im-
provement is high regardless of the navigation tree characteristics 

(87 percent for “prothymosin” (Q5), 85 percent for “vardenafil” 
(Q12)), and regardless of the number of citations in the query result 

(80 percent for “LbetaT2” (Q1), 90 percent for “tourette syndrome” 
(Q20)). The smallest improvement (71 percent) was observed for 

“ebola virus” (Q14). The reason is that its target concept (Ebola 
Vaccines) is located far away, in terms of navigation tree distance, 

from other query results. Most query results are distributed under a 
MeSH concept called “Viruses,” while the target concept is located 

under a sibling concept called “Complex Mixtures.” Hence, it takes 
several EXPAND actions until BioNav reveals the latter. Query “ice 

nucleation” (Q6) also exhibits small improvement (75 percent), but 
for a different reason. Its target concept (Plants, Genetically Mod-

ified) has an extremely low |L(n)| = 2. Hence, its PE is quite low and 

so it takes several EXPAND actions until it is revealed. 
 

Consistent, but more modest, improvement in navigation cost is 
achieved by BioNav over Top10LevelWise. The average improve-

ment is 41 percent, with a minimum of 16 percent for query “asperg-
er’s syndrome” (Q15) and a maximum of 63 percent for “tourette 

syndrome” (Q20). Since Top10LevelWise explores the navigation 

tree level wise,a concept that is high up in the hierarchy, such as the 
target  concept of “asperger’s syndrome,” can be reached as fast by 

Top10 LevelWise as it does by BioNav. On the other hand, a 
 

 
 

 

 
 

 
 

 
 

 
Fig. . Overall navigation cost comparison for biochemistry and medicine. 
 
 

 

 
 
Fig. 8. Number of expand actions comparison. 

 

concept that is deep inside the navigation tree but with high PE, such 

as the target concept of “tourette syndrome,” is reached much faster 
by BioNav. Fig. 9 shows the number of EXPAND actions for the 

three methods for the biochemistry query set only. Note that these 
numbers are relatively close, which means that the dramatic differ-

ences in Fig. 8 are due to the fact that BioNav selectively reveals few 
descendant nodes for each EXPAND, instead of a possibly large 

number of child nodes. The worst case is the “ice nucleation” (Q6), 
where BioNav requires six EXPAND actions, compared to four of 

static navigation, since the target concept is quite high in the MeSH 
hierarchy, and at the same time has a low PE, as discussed above. A 

similar increase in the number of EXPAND actions is observed for 

query “ebola virus” (not shown in Fig. 9) for the reason discussed 

above. Fig. 10 shows the number of revealed concepts for each 
method and demonstrates the superiority of our approach. 
 

7 RELATED WORK 

Several systems have been developed to facilitate keyword search on 
PubMed using the MeSH concept hierarchy. Pubmed itself allows 

the user to search for citations based on MeSH annotations. A key-
word query “histones[MeSH Terms]” will retrieve all citations anno-

tated with the MeSH term “histones” in the MeSH hierarchy. The 
user can also limit her search to a MeSH term by using additional 
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filters, e.g., “[majr]” to filter out all citations in the query result that 
don’t have the term as their major term. These filters can be com-

bined by using the Boolean connectives AND, OR, and NOT. This 
interface poses significant challenges, even to experienced users, 

since the annotation process is manual and thus prone to errors. The 
closest to BioNav is GoPubMed [5], [28], which implements a static 

navigation method on the results of PubMed. GoPubMed lists a 
predefined list of high-level MeSH concepts, such as “Chemicals and 

Drugs,” “Biological Sciences,” and so on, and for each one of them 
displays the top-10 concepts. After a node expansion, its children are 

revealed and ranked by the number of their attached citations, whe-
reas BioNav reveals a selective and dynamic list of descendant (not 

always children) nodes ranked by their estimated relevance 
to the user’s query. Further, BioNav uses a cost model to decide 

which concepts to display at each step. Other systems that tackle 
PubMed search using the MeSH concept hierarchy include PubMed 

PubReMiner [25] and XplorMed [22], [30]. Both of them are query 
refinement tools and do not implement a particular navigation me-

thod. In particular, PubMed PubReMiner outputs a long list of all 
MeSH concepts associated with each query along with their citation 

count. The user can select one or more of them and refine her query. 
XplorMed performs statistical analysis of the words in the abstracts 

of the citations in the query result and proposes query refine-
ments/extensions to the user in a multistep process. Ali Baba [23] 

displays the results on a graph where edges denote associations be-
tween the result nodes, which are typically genes and proteins. iHOP 

[10], [11] shows to the user the genes associated to a query gene, 
where the association is measured through co-occurrence in a sen-

tence. LSLink [15] uses the physical links between objects in the 
query result to find meaningful associations between pairs of terms 

in different controlled vocabularies annotating objects in multiple 

datasources. These associations allow users to discover novel and 
interesting relationships between pairs of concepts and potentially 

explore objects that are not retrieved by the initial query. Two aca-
demic proposals [2], [3] dynamically categorize SQL query results 

by inferring a hierarchy based on the characteristics of the result 
tuples. Their domain is the tuple attributes and their problem is how 

to organize them hierarchically in order to minimize the navigation 
cost. They also decide the value ranges for each attribute, for both 

categorical and numerical ones, and how to rank them. One of the 
systems [3] takes into consideration the user’s preferences during the 

inference for a more personalized experience. Once the hierarchy is 
inferred, they follow a static navigation method. BioNav is distinct 

since it offers dynamic navigation on a predefined hierarchy. Hence, 
  

BioNav is complementary to these systems, since it can be used to 
optimize the navigation, after these systems construct the initial na-

vigation tree. Clustering systems [27], [29], [31] create unsupervised 
query-dependent clusters. PubMatrix [24] takes as input two sets of 

keywords terms, in addition to query keyword, and generates a co-

occurrence frequency matrix of each pair of terms from the two lists, 
in the query result. The user can then browse this matrix and perform 

independent searches on pairs of terms. The Clusty [29] search en-
gine clusters keyword-based query results on the web and operates 

on top of other search engines. HighWire Press [27] uses Clusty’s 
algorithms to cluster query results in the biomedical domain. Demn-

er-Fushman and Lin [6] cluster PubMed documents by the drug they 
refer to based on the UMLS [17] drugs classification. Once the clus-

ters are created, a static navigation method is followed. BioNav 
could be adapted to work on top of the (typically shallow) 

hierarchy created by clustering systems. 

 
 
8 CONCLUSION 

Information overload is a common phenomenon encountered 
by users searching biomedical databases such as PubMed. We 
address this problem by organizing the query results accord-
ing to their associations to concepts of the MeSH concept hie-
rarchy and propose a dynamic navigation method on the re-
sulting navigation tree. Each node expansion on the naviga-
tion tree, reveals a small set of nodes, selected from among its 
descendents, and the nodes are selected such that the informa-
tion overload observed by the user is minimized. We formally 
stated the underlying framework and the navigation and cost 
models used for evaluation of our approach. We prove that 
the problem of selecting the set of nodes that minimize the 
navigation cost is NP-complete, we propose an efficient heu-
ristic, and we validate it for diverse sets of queries and navigation 

trees. The implementation of BioNav is available at http:// 

db.cse.buffalo.edu/bionav. 
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